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The problem of an admissible synthesis of inertia controls for non-stationary systems with a multidimensional control with 
geometrical constraints on the control and its derivatives is considered. The problem is solved analytically for a linear system: a 
constructive structure of a family of controls is given, each of which solves the problem, the time of motion from the initial point 
at zero is calculated and the corresponding trajectory is found. For a non-linear system the problem is solved to a first approximation 
in the case when there are constraints on the control and on its derivatives. 0 2003 Elsevier Ltd. All rights reserved. 

1. INTRODUCTION 

We will consider the problem of an admissible synthesis of bounded inertial controls for the system 

i = f(r,x,u>, xeRn, UER~, tc [rO,t,] (1-l) 

i.e. the problem of constructing a control u = u(t, x), which transfers an arbitrary initial point x(to) = x0 
from a certain neighbourhood Q(to) of the origin of coordinates to a point x1 = 0 along a trajectory 
x(t) E Q(t) of the system 

1 = f(r, -6 u(t, x)) (1.2) 

in a finite time T(to, x0) I tl - to and which satisfies, together with the derivatives z&‘)(t, x), . . . , u(‘)(t, x), 
by virtue of system (1.2), the constraints 

(Izik)(t, x)11 I d,, k = 0, 1 ,...,l, XE Q(r), re [ro,ro+T) (1.3) 

where do, . . . , dl are specified numbers. 
Controls with such constraints were considered previously in [l] and were called inertial controls. 

Sets of controllability for linear systems with inertial controls were considered in [2, 31. 
One arrives in a natural way at the problem of synthesizing an admissible control from the problem 

of the optimal synthesis of a control [ 1,441, by dropping a certain quality criterion from the optimization. 
The problem is solved in the same phase space, since, when the phase space is extended by introducing 

a new control v = ti this approach gives a solution in the form 2) = ~(t, x, u), while it is necessary to 
obtain a control in the form u = u(t, x). 

Developing the results obtained in previous papers [7, 81, we will consider the problem of the 
admissible synthesis of controls with constraints on the control and its derivatives (unlike [7]) in 
the case of a non-stationary system and multidimensional control (unlike [S]). We will use the 
controllability function method [9, lo], which is based on the construction of a controllability function 
@(t, x)(@(t, x) > 0 whenx # 0 and @(t, 0) = 0 for t E [to, tI]) and controls u(t, x) = E(t, x, @(t, x)), such 
that the following inequality is satisfied 
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A(Q(t, x); u(t, x)) I -po’ -“a(t, x) 

A(Q(t, x); u(t, x)) A n dQ(t x) ?p+p-& fj(h 4 u(t, xl) 
i=l I 

for certain p > 0, a > 0. Inequality (1.4) denotes that the control is chosen in such a way that the motion 
occurs in the direction in which the function @(t, x) decreases. Satisfaction of this inequality ensures 
that the trajectory is incident on the origin of coordinates after a finite time. 

The case when one must obtain the time of motion T(t,, x0) from an arbitrary point x(t,,) = x0 to the 
pointxi = 0 when constructing the synthesizing controls is of interest. The case when the controllability 
function is the time of motion occurs, for example, when one uses the equality h(O(f, x); u(t, x)) = -1 
instead of condition (1.4). If, moreover, the control u(t, x) is such that 

minA(O(r,x); U) = A(@(t,x); u(t,x)) = -1 
UE R (1.5) 

then, putting w(t, x) = -o(t, x), we obtain the fundamental equation of the method of dynamic 
programming - Bellman’s equation [4,5] pc%A (~(t, x); U) = 1 for the speed of response problem. 

The choice of the control using Eq. (1.5) can be treated from the position of minimizing the function 
@(t, x) as follows: the control u(t, x) is chosen in such a way that the angle between the direction of the 
most rapid decrease in this function and the direction of motion is a minimum. In the controllability 
function method this angle is not necessarily a minimum. 

When inequality (1.4) has the form 

A(o(t, x); u(t, x)) I -b@(t, X) 

the function @(t, X) is the Lyapunov function. This inequality indicates that, for small values of 0, the 
angle between the direction of motion and the direction in which the function o(t, x) decreases is no 
less than in the controllability function method, since @(t,x) 5 ol-““(t,x) when a 2 1. Hence, the angle 
between the direction of motion and the direction in which the function @(t, x) decreases in the 
controllability function method is no less than the angle in the dynamic programming method and no 
greater than in the Lyapunov function method. 

It is of interest to construct vector controllability functions by analogy with the Lyapunov vector 
functions introduced by Bellman [ll] and Matrosov [12]. Such functions were constructed previously 
in [9] for autonomous linear systems. 

2. SOLUTION OF THE PROBLEM OF SYNTHESIZING INERTIAL 
CONTROLS FOR A LINEAR COMPLETELY CONTROLLABLE SYSTEM 

Consider the linear system 

i = A(t)x+B(r)u, XE R”, UE R’; A(?)E C2n-2+‘, BE C*‘+‘+’ (2-l) 

Here and everywhere henceforth, unless otherwise stated, we will assume that t E [to, ti]. Without 
loss of generality, we will also assume that rat&B(t) = r. We will put A = A(t) - Edldt (E is the identity 
matrix) and assume that 

rank(B(t), AB(t), . . . . A”-‘B(r)) = n (24 

and this rank is realized in the column vectors of the matrix 

K(f) = (b,(r), . . ..Ant-‘bl(t). . . . . b,(t), . . . . Anr-‘br(t)); nl + . . . +n, = n 

where b,(t) is the i-th column of the matrix B(t). We will put 

(2.3) 

no = max ni, so = 0, sk = n1 + . . . +nk, k = 1, . . . . r 
ISiSr 

Suppose we have the expansions 
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A”‘bi(t) = C C y~~(r)Akbj(r), i = 1, . . ..r (2.4) 
j= Ik=O 

where &(t) E C” :$(t) = 0 for j < i, k > min& nj - 1) or j 2 i, k > min{ni - 1, nj - 1). 
Following the approach proposed previously in [7], we choose a vector function cl(t), . . . , c,.(t) E Cn 

from the conditions 

K*(t)ck(t) = esk; esk = (0, . . . . 0, l,o, . . . . o)*, k = 1, . . . . r 

(the asterisk denotes transposition). 
Consider the non-degenerate matrix 

L(t) = (cl(t), . . . . A;%,(r), . . . . c,(t), . . . . An;-&)*; A* = A*(r) + Edldt 

We introduce the matrices 

D(O) = diag(D,(O), . . . . D,(o)), Di(@) = diag(O-(n’-k)‘a-“(2a))~‘= 1 

Ha = diag(Zfy, . . . . Hy), Ha = diag(-(n,-k)lct- 1/(2a))L’= i, i = 1, . . . . r 

Consider {F;‘(O),, i - a family of positive-definite matrices of the form 

F:(O) = “i( 1 - &a)aexp(-Aof)BoB~exp(-A~)dt 
0 

(2.5) 

where the it x it matrixA has the formAo = diag(Aoi, . . . ,/IO,), Aoi is an ni x IZ~ matrix, the elements 
of the first subdiagonal of which are unity, and all the remaining elements are zeros, and B. is an 
IZ x r matrix in which the elements (Bo)sii = 1 (i = 1, . . . , r), while all the remaining elements are equal 
to zero. The matrix F,(O) can be represented in the form [8] 

F,(O) = D(O)F,D(O) (2.6) 

The matrix Fa = F,(l) satisfies the equality 

F,A,+A:F, = -Fa+FaHa+HaFa=-Fa; A, = A,-1/2B,B,*F, (2.7) 

Analytical inversion of matrices of the form (2.5) were carried out previously in [13]. 
Suppose a0 > 0 is a so far arbitrary number. For a 2 1 we will determine the controllability function 

@,(t, x) when x # 0 from the equation 

2a00 = (L*(t)F,(@)L(t)x, x) (2.8) 

and put 
@,(t, 0) = 0 (2.9) 

It is easy to show that the following assertion holds. 

Assertion 1. For each a 2 1 Eqs (2.8) and (2.9) define a non-negative function 0 = @,(t,x), continuous 
for all x and continuously differentiable for x # 0. 

Suppose 0 > 0 is a certain number. We put 

R, = s~22ao~l(L~llFa(~)~~), 6~ (0, l), L, = max IIL(t>ll 
t,srst, 

Assertion 2. For each a 2 1, a positive number c, I ((ti - to)/a)* exists such that the set 

Q,(t) = {x : @,(t, x) I ca} 

is bounded and Q,(t) c Qf, A {x: ]]xll c R,}. 

(2.10) 
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Proof From the relations 

ix : tt*tr)Fat~i)w)x, x) < 2a&V 3 {x : llxl12< 2aaGl(L~jJFar(G)~)} 

we have 

2a@ > (L*(r)F,(o)t(t)~, x), x E Q;\{O} 

Since (L*(t)F,(O)L(t)r, x) is a decreasing function of 0, on the basis of the inequality 

t~*t~)F,tQ)U~)x, X) 2 Ilxll*I(~~~~F~(Q)I~); Lo = max jt’(r)ll 
r,s-tsr, 

we have 

Q; I ix: Q,tr, x) I R~~(~cz&;~~~~(@)~)} 

Using the expression for R,, we can therefore conclude that for 

(2.11) 

the inclusion Q,(t) C Qf holds. 
We specify the control zP(t, X) for x E Q$)\{O) by the formula 

uU(t, n) = -M-‘(t)B;( 1/2F,(O,(t, x))L(t) + i(t) + L(t)A(t))x 

where M(t) is an upper-triangular r x r matrix with elements 

mii(t) = 1, mij(t) = (A;-’ Ci(t))*bj(t) for j> i,, i = 1, . . . . I 

(2.12) 

Assertion 3. The derivative of the function @,(t, x), by virtue of system (2.1) with control ua(t, x) of 
the form (2.12), satisfies the equality 

6)a(t, X) = -o;- llU( t, x) (2.13) 

proof. We will further assume 0, = @,(t, x). We put 

~(8, t, x) = D(@L(r)x, PO = -1/2B$F,, ji(r) = (i(t) + L(t)A(t))L-‘(t) 

Then Eq. (2.8) and control (2.12), by virtue of (2.6), take the form 

2aoQa = (F&Q, tv XL Y(Qav t, XI) (2.14) 

va(t, x) = M-‘(t)(6)~“2a’P,y(Q,, t, x) - B,*;i(r)L(t)x) (2.15) 

We will calculate the derivative y(O,, t, x) by virtue of system (2.1) with a control of the form (2.15) By virtue 
of the choice of cl(t), . . . , c,(t) we have the equation [7] 

L(t)B(r) = B@(t), (E-B,B;);l(t) = A, (2.16) 

Then, on the basis of Eq. (2.1) with a control of the form (2.1), using relation (2.15) we obtain 

$[L( t)x] = A,L(t)x + 6-,“(2a)BoPoy( 9,, t, x) (2.17) 

From the relationy(O,, t, x) = D(O,)L(t)x, using equalities (2.17) and 

D(@)A,D-‘(8) + D(0)B,P,,0-*“2a’ = A,O-“a (2.18) 
we have 

-1 a >i(Q,,t,~) = (&Q, H +A,8i’a)y(8a,t,~) (2.19) 

Then, from Eq. (2.14), using equalities (2.19) and (2.7) we obtain Eq. (2.13). 
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It follows from (2.13) that the time of motion Ta(to, x0) from an arbitrary point x0 E Q,(to) to the 
point x1 = 0 is given by the equation 

T,(t,, x0) = CtQyy ro, x0) (2.20) 

Further, to prove the boundedness of the control and its derivatives, the following result is necessary. 
We put 

1 
mk = min{nO,k). 6, = 

for OIk<no 

0 for noIkIf 

We also put 

pk = p,-,((r,- l/WE-Ha+A,), rk = k/a+ 14201) 

&(t, 0) = i ci, [b,-l(t)](k-‘)@(k-i)‘api- ‘2 ~-;[M-l(r)](k-i-‘)Bg*Ao(t) x (2.21) 
i=O j=O 

(k -i)‘aRij + &A;& (Q)& 

)I 

R, = A;+‘Bopj (2.22) 

where Cb are binomial numbers. Here and everywhere henceforth k = 0, 1, . . . ,1. 
The kth order derivative (u*(t, x))(~) of the control u*(t, x), by virtue of the closed system (2.1) is 

given by the formula 

( uU( t, x)fk’ = @&(t, @&(@a, t, x) (2.23) 

We will show that the control and its derivatives are bounded. We put 

qk = 

k-i mi-1 

C C~_iMk_i_jaj C c&l-i,‘allRijll + 6ict 
j=O j=O II (2.24) 

(k + 1)/a, for c,Il 
Yi = (n,+k-i)/a, for c,> 1 

Here and everywhere henceforth the constant c, is defined by expression (2.11). 

Assertion 4. For each a 1 21 + 1 the control ua(t, x) and its derivatives (u”(t, x))(l), . . . , (u”(t, x))“’ 
by virtue of the closed system (2.1), satisfy specified constraints of the form 

ku”(t, dk)ll 5 d,, Xc Qa(t)\{Ol, tE [tO,tO+Ta) (2.25) 

Proof. From expression (2.22) we obtain the inequalities 

ll&(t, @,(t. x))/ <7)k* x E Q,(W{Ol. t E [t,y tll 

Then, from the form of the control (2.15) and its derivatives (2.23), we obtain that when t E [to, to + T,) C 
[to, tl] the following inequalities hold 

kua(rv x))(k)ll s l-&@,y t, x,ll@2. x E Q,(~NOl (2.26) 
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From Eq. (2.14) we have 

(ly(O,, t, x)/l2 5 2oo@,~~~~~~. x E Q:, 

We then obtain from inequalities (2.26) 

Ikua(t, df)ll Q&-$$f-rk. x E Q,WWl, t E ito, to + T,) 

Choosing a0 from the condition 

(2.27) 

(2.28) 

we obtain from inequalities (2.27) that the control and its derivatives satisfy constraints (2.25). 

Theorem 1. Consider system (2.1) where 12 1 is a natural number and rankB(t) = r, condition (2.2) 
is satisfied and we have the expansions (2.4). Suppose a 2 21+ 1, the number a0 is chosen from condition 
(2.28), the controllability function @,(t, x) is defined by Eq. (2.8) and condition (2.9), the constant c, 
is defined by expression (2.11), and the set Q,(t) is defined by expression (2.10). 

Then the control u”(t, x) of the form (2.12) solves the problem of synthesizing inertial controls for 
system (2.1) for x E Q,(t)\{O>, while the time of motion T,(to, x0) from an arbitrary point x(to) = 
x0 E Qdto) to the point x1 = 0 is given by Eq. (2.20). 

Proof. For each a 2 1 a controllability function @,(t, x) is constructed which satisfies conditions 1 
and 2 (Assertion l), for which conditions 3 and 5 (Assertion 2) of Theorem 1 from [lo] are satisfied. 
The satisfaction of condition 4 follows from the following. The control #(t, x) of the form (2.12) satisfies 
the Lipschitz condition in each region {(t, x): to I t 2 tl, 0 < p1 I ]]x ]] I p2} with constant L,(pI, p2) + 
+m as p1 + 0 and when a 2 21 + 1 together with the derivatives (u*(t, x))(l), . . . , (u”(t, x))(” 
of the form (2.23) satisfies the specified constraints (2.25) (Assertion 4). The derivative of the function 
@,(t, x), by virtue of the closed system (2.21) with control (2.12), satisfies Eq. (2.23) (Assertion 3). 

Then, we obtain the assertion of this theorem from Theorem 1 from [lo]. 
We will obtain the trajectory x(t) of system (2.1), corresponding to the control u*(t, x), with begins 

at an arbitrarygoint x0 E Q,(to) and ends at zero. We choose a0 from condition (2.28) and find the 
positive root 0, of Eq. (2.8) forx = x0 and t = to. We consider the Cauchy problem 

i = A(t)x- B(t)hf’(t)B,*( 1/2F,@,(t))L(t) + i(t) + L(t)A(t))x 

-4to) = x0 
(2.29) 

6,(t) = -e;- t’a(t), e,(t,) = 0: 
Solving problem (2.30) we have 

(2.30) 

e,(t) = ((to+ T,- t)la)*, T, = a(OE)“a (2.31) 

Then, x(t) is the solution of the Cauchy problem corresponding to problem (2.29) after substituting 
expression (2.31) into the right-hand side of the equation. 

We put z = L(t)x. Using Eqs (2.16) we obtain 

i = (A,- l/z B,B,*F,(((t,+ Ta-r)la)a))z, z(tO) = L(t,)x, 

or, in component-by-component form (everywhere henceforth i = 1, . . . , r) 

Z s,-,+j(to) = (A~-'Ci(to))*xo, j = 1, ...y ni 

where f f are the elements of the matrix Fw Hence we obtain 
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(2.32) 

We put 

A, = -dldz, A, = (-dldT+k-I)...(-dldz), k = 2, ..,, no 

By replacing the time t = to + T-e’ from relations (2.32) we have the Cauchy problem in the functions 
Yi(T) = z s, -1 + GO + L - 4 

“l- 1 

Since 

Z sim,+~(f) = Yi(ln(to+T,-t)) 

the remaining functions zsi -1 + 2(t), . . . , zJt) are found by differentiating the last equation, i.e. 

z ,,_,+j(') = Zyil+),(f)v .i = 29 . . ..ni 

The trajectory x(t) is defined by the equality x(t) = L?(t)z(t) and, as can be seen from the above 
discussion, one only needs to solve Eq. (2.8) once to find it. 

Example. Consider the problem of the positional synthesis of inertial controls for a model two- 
dimensional system of the form 

il 1 1 1 
= 1+x1 + 2x2 + -u 

I+t 

i2 2 = 
-x,--~+$+U, tE [0,31 

(2.33) 

with constraints on the control and its derivative of the form (1.3), where do = 1 and dt = 3. System 
(2.33) is completely controllable since condition (2.2) is satisfied for t 2 0. We will consider the case 
when a = 3, and this subscript will not be indicated in the notation. We will choose a number a0 from 
condition (2.28), putting it equal to 6/(136 + 43fi). The equation for determining the function 
@(t, x) when x f 0, according to Eq. (2.8), has the form 

12 @2--10@“3(2(1 +t)x +x )2-1° 1’3 136+43& 27 1 2 z@ (2(1 +t)x,++)x 
(2.34) 

x((l+t)2x,-(1+t)X2)- +g( 1 + t)2(( 1 + t)x, -x2)2 = 0 

From condition (2.11) we obtain that, when 0 2 8123956 and values of 6 and o close to unity, the constant 
c = 1. The region Q(t) has the form 

Q(t) = {(x,,x2) : (1 +t)2(77+34t+5t2)x;-2(1 +t)(- 13+ 16t+ 

+ 5t2)x,x2 + (5 - 2t + 5t2)x; I 1944/(680 + 215+&j)}, t E [0,3] 

The control u(t, x) from (2.12) is given by the formula 
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u(t,x) = - ( 5 2 
30W(t, x) + (l > 

+t(( 1 + t)x, -x,) - 
6 

-(3B1”:r,x)+ikr TX,+& >( 
2(1 +c) 

> 

This control solves the problem of synthesizing inertial controls for system (2.33) in the region Q(t)\(O), 
t E [0,3], and together with the derivative 

ri(t,x) 5 4 = ( -+ 5 
3@0,x) 3(1 +r)Qm(f,x)+o’ 1 

F((l +t)x, -x,)+ 

5 5 ( 9CP(t,x)+3(1+f)Q’“(r,x) 1 + -- I( 2(1 +ox 
(1+t)2 3 ’ 

+Ax 1 
3 2 

satisfies the constraints 1 u(t, x) 1 < 1, Iti(t, x) 1 I 3 in it. 
Suppose 0’ is the positive root of Eq. (2.34) when t = 0 andx = x0. We will introduce the notation 

T = 3(8’)ln, r(t) = &ln(T-t), “lo = &lnT 

The trajectory of system (2.33) corresponding to the control u(t, x) and proceeding from the point 
x(O) = x0 E Q(0) to zero, is given by the equations 

z,(t) = (T-t)3(k,~~~~(t)+k2siny(t)) 

Z2(0 = (T- 02(- (3k, + &,)cosy(t) + (hk, - 3k,)siny(t)) 

The control and its derivative along this trajectory have the form 

u(t) = - 15 2 -+- 
(T-t)2 (1 +$ 

c 

45 k(f) = - + 
T-t)3 

Z2W 

The region Q(0) (its boundary is represented by the thick curve) and the phase trajectories, which 
transfer the points (0.1, O.l), (-0.17,0.5), (0.13, -0.67) E Q(0) to zero, after a time T = 2.797, T = 2.944 
and T = 2.945 respectively, are shown in Fig. 1. In Fig. 2 we show the control and its derivative on 
trajectories which begin at the point (0.13, -0.67) E Q(0) and end at zero. They obviously satisfy the 
specified constraints. 

3. SYNTHESIS OF CONTROLS FOR A NON-LINEAR SYSTEM 
TO A FIRST APPROXIMATION 

We will consider the problem of synthesizing controls for system (1.1) with constraints on the control 
of the form (1.3) when I = 1. We will assume that the function f(t, x, u) satisfies the condition 
f(t, 0, 0) = 0 (everywhere henceforth we must again bear in mind that c E [to, tl]) and has derivatives 
with respect tox and u that are continuous up to the second order. Then, in the neighbourhood of zero, 
we can write system (1.1) in the form 
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-0.8 
-0.4 0 0.4 

Fig. 1 Fig. 2 

it = A(t)x + B(t)u + g(t, x, u); A(t) = f,(t, O,O), B(t) = f,(t, 0,O) 

Here g(t, x, U) is a continuous function; we will assume that it satisfies the inequality 

Ilg(t, x, u)ll 5 CIIIXIIS’ + c~llxIIs21141s3 + c$41s4 

where 

(3.1) 

(3.2) 

c,ro, c,ro, $20, s,>l, s,+s,>l, s,>l 

We will put 

a0 = max 
{ 

3, 
2n,-4 
-- 1, 

2n, + sj - s2-3 2n,-2 2no 
s, - 1 s* + s3 - 1 

,--1 
2n, - sz + s3 2n, 

sq - 1 9-- 1, ,-+l 
Sl s2 + s3 s4 

Theorem 2. We will consider the controllable system (3.1) where A(t) E C2” - ‘, B(t) E C%, 
rankB(t) = r, for which condition (2.3) is satisfied, and we have expansions (2.4). Suppose the function 
g(t, x, U) satisfies inequality (3.2) and in each region 

{(t,x,u): r,st<t,, 0 < PI 5 llxll 5 P2r lbll 5 &J 

satisfies the Lipschitz condition 

Ilg(t, x”, 0 - g(t, x’, U’NI 5 qp,, P2W’ - x’ll + lb” - 41) 

Then, positive numbers a0 and Z, < 1 exist such that, when a 2 a~, the control 

uU(t, x) = -l/2M-1(t)B,*Fa(Qa(t, x))L(t)x (3.3) 

where the controllability function O,(t, x) is defined-by Eq. (2.8) and equality (2.9), solves the problem 
of synthesizing controls for system (3.1) in the regionQ,(t) = {x: @,(t,n) I Za} and satisfies the constraints 

bU(t, 4 5 4), llaa(f, x>ll 5 d, (3.4) 
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The time of motion T,(te, x0) from the point x(tO) = x0 E B&to) to the point 0 along the trajectory of 
system (3.1) with control u”(t, x) satisfies the inequality 

Ta(t(J, x0) 2 WBaPf%J, x0), pa > 0 

Proof. Taking into account the result proved in Section 2, by Theorem 1 from [lo] for the complete 
proof of this theorem we need to show that the control and its derivative, by virtue of the closed system 
(3.1), satisfy the specified constraints, and we need to establish inequality (1.4) for system (3.1) with 
control (3.3), the satisfaction of which ensures that the trajectory will be incident on the origin of 
coordinates after a finite time. 

We will put 
y(Q, r, x) = D(Q)L(t)x 

and rewrite control (3.3) in the form 

uao, x> = M-l(r)Q-$(*a) tr9 x)POY(Qa(t7 x)9 c9 x, 

We will further assume that 

P-5) 

0 = Q,(t, XL y = Y(Q,(h x)9 f, xl, D = D(Q,O,X)), g = d&x, u*(m)) 

On the basis of Eq. (3.1) with control (3.5) and Eqs (2.16) we have 

d( L(t)x)ldt = A,L(t)x + @-1’(2a)BoPoy + L(t)g 

Then, as above, using Eq. (2.18), we obtain 

j = (&-‘Ha + O-l’aA1 + 8-“(2a)B,B,*~(t)D-1)y + DL(t)g 

From Eq. (2.14), using relations (3.6), (2.14) and (2.7), we have 

0 = _ Q1 - Ifa + (@l- 14W (X(r)Yt Y) + 2Q(FaY, DUf)g)Y(flY, Y) 

= FaBoB$i(t)D-’ + D-‘;i*(t)B,B,*F, x(r) 

(3.6) 

(3.7) 

Then, on the basis of Eq. (3.7), the derivative of the control ua(t, x) of the form (3.5), by virtue of the 
closed system (3.1) has the form 

ciU( t, x) = q’(t)Q-“(*a’)poy + &(t)Q-3’(*a)ply + &(t)Q-“‘*a’ x 

x P,DL(t)g + M-l(t)O-l’a PoBoB,*&t)D-‘y + M-‘(t)P,(Ha- El(2a))yx (3.8) 

x [Q-l’a(~Wy, Y) + 20-1’aV’ay, DLWgMF”y, y) 

From (2.14) we have 

Then, since 

FY9 Y) 2 llYl12~llm-111 

IlD(Q)ll 5 Q-no’s+ 1’(2a), IID-‘@)I/ s Q1’(2a), Q < 1 

from relations (3.7), (3.5) and (3.8) we obtain the inequalities 

0 I -( 1 - 2CP((F,]] (((P)-l((~, - 

-moo- - IL2 ““‘a+3’(2a)~,,~JFa~~3~lI(Fa)-‘llJlgll )d - 1/u 

(3.9) 

(3.10) 
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Ilri”(t,x)ll 1p,&P3’(*“)+ p2&cf2-"(2a)+ p30-no'allgll 

PI = CLotI + nOia + llFall/2) 

CL2 = llFall llFilll I’*( M, + M,ii, + 2nollFall II(Fa)-llliiolu)l& 

Cl3 = MoIIFJ(1/2 + ~ollF,IIII(~)-lll~n)L- 

(3.11) 

(3.12) 

The quantities io, MO, MI are defined by formulae (2.24). 
We will obtain an estimate for (I&‘(t)D-‘y, u”(t, x)) I( . Using inequality (3.2), the form of the control 

u”(t, x) and the right-hand side of inequality (3.9) we have 

llgll 5 p4as),‘2Qs1’(2a) + sJ2 + Isa0 (s~+s~)/*~(s~ +s,)/*+&-@(*a) ~12 s412-~~/(*a) - +p6a0 Q 

P4 = Cl2 
',/*fllq$'* 

I$ = c22 
(5*-~1)/*L~M~IIFal,~I~IF-,1~~(52+~~)'* 

c16 = C32 -~4’2M~IIFa~~~4~~~~/IS4’2 

We then obtain the following inequality from (3.10) 

d, 5 -f),( Q)Q’ - “a 

(3.13) 

(3.14) 

where 

x(CL4ao 
(s, - lWQv,(a) (sz+ss-1)12 v,(a) 

+ PsUo 0 
h- 

+p6"0 1WQv3(a) 1 

v,(a) = (sI - 1)/2 - n,lol+ (sr + 3)/(2a) 2 0 

v,(a) = (s2 + s3 - 1)/2 -no/a + (s2 - s3 + 3)/(2a) 2 0 

v3(01) = (s,-1)/2-n,la+(3-s4)l(2a)20 

when a 2 a~. From inequalities (3.13) (3.11) and (3.12) we obtain 

Ilua(t, x>ll 5 poJ;ro9 lIria(f, XIII I yf(ao), x E ix : @,(t, x1 I minic,, 1)) (3.15) 

where 

Suppose the number a0 satisfies the inequalities 

0 c a0 I d;lp;, \y(uo) I d, 

We choose a positive constant 2, such that for 0 < 0 lJa the inequality Pa(O) > 0 is satisfied. We 
choose C, 
Put Pa = 

= min{c,, ?,, l}, and consequently, we have Q,(t) C Q,(t) C QA. For these a0 and Z, we 
Pa(2d.F rom (3.14) we then obtain the inequality 

Oa( I, X) I -PaOfx- ‘la( t, X), X E ea( t) 

Hence, we have established inequality (1.4) when p = pa and a 2 q. 
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It _follows from inequalities (3.15) that the control and its derivative satisfy constraints (3.4) for 
x E Q,(t)\(O). The assertion of Theorem 2 follows from Theorem 1 of [lo]. 
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