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The problem of an admissible synthesis of inertia controls for non-stationary systems with a multidimensional control with
geometrical constraints on the control and its derivatives is considered. The problem is solved analytically for a linear system: a
constructive structure of a family of controls is given, each of which solves the problem, the time of motion from the initial point
at zero is calculated and the corresponding trajectory is found. For a non-linear system the problem is solved to a first approximation
in the case when there are constraints on the control and on its derivatives. © 2003 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

We will consider the problem of an admissible synthesis of bounded inertial controls for the system
= f(txu), xeR', uekR, teltt] (1.1)

i.e. the problem of constructing a control u = u(t x), which transfers an arbitrary initial point x(fg) = x,
from a certain neighbourhood Q(#)) of the origin of coordinates to a point x; = 0 along a trajectory
x(t) € Q(¢) of the system

= f(t, x, u(t, x)) (1.2)

in a finite time T(¢y, xo) < t; — t, and which satisfies, together with the derivatives uV(t, x), ... , u®(t, x),
by virtue of system (1.2), the constraints

WP ol <d,, k=0,1,..,1, xe Q) t€ltyty+T) (1.3)

where d,, ... , d; are specified numbers.

Controls with such constraints were considered previously in [1] and were called inertial controls.
Sets of controllability for linear systems with inertial controls were considered in [2, 3].

One arrives in a natural way at the problem of synthesizing an admissible control from the problem
of the optimal synthesis of a control [1, 4-6], by dropping a certain quality criterion from the optimization.

The problem is solved in the same phase space, since, when the phase space is extended by introducing
a new control v = # this approach gives a solution in the form v = v(t, x, ©), while it is necessary to
obtain a control in the form u = u(t, x).

Developing the results obtained in previous papers [7, 8], we will consider the problem of the
admissible synthesis of controls with constraints on the control and its derivatives (unlike [7]) in
the case of a non-stationary system and multidimensional control (unlike [8]). We will use the
controllability function method [9, 10}, which is based on the construction of a controllability function
O(t, x)(O(t, x) > 0 whenx = 0 and O(¢, 0) = 0 for ¢ € [¢,, t1]) and controls u(t, x) = u(t, x, ©(t, x)), such
that the following inequality is satisfied
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A(O(t, x); u(t, x)) <-BO' V%1, x)

A, 2); u(t, 1)) = 2882 4 5 90D £,y 41, 2y a4
i=1 :

for certain § > 0, o > 0. Inequality (1.4) denotes that the control is chosen in such a way that the motion
occurs in the direction in which the function ©(t, x) decreases. Satisfaction of this inequality ensures
that the trajectory is incident on the origin of coordinates after a finite time.

The case when one must obtain the time of motion T(fg, xo) from an arbitrary point x(¢5) = xg to the
pointx; = 0 when constructing the synthesizing controls is of interest. The case when the controllability
function is the time of motion occurs, for example, when one uses the equality A(O(z, x); u(t, x)) = -1
instead of condition (1.4). If, moreover, the control (¢, x) is such that

mir‘llA(Q(t, x);u) = AO(, x); u(t, x)) = -1 (1.5)

then, putting o(z, x) = -0O(t, x), we obtain the fundamental equation of the method of dynamic
programming — Bellman’s equation [4, 5] maéA (o(¢, x); u) = 1 for the speed of response problem.
ue

The choice of the control using Eq. (1.5) can be treated from the position of minimizing the function
O(t, x) as follows: the control u(z, x) is chosen in such a way that the angle between the direction of the
most rapid decrease in this function and the direction of motion is a minimum. In the controllability
function method this angle is not necessarily a minimum.

When inequality (1.4) has the form

A(O(1, x); u(t, x)) < -BO(L, x)

the function ©(¢, x) is the Lyapunov function. This inequality indicates that, for small values of ©, the
angle between the direction of motion and the direction in which the function O(t, x) decreases is no
less than in the controllability function method, since ©(z, x) < ©' ~1%(t, x) when a.> 1. Hence, the angle
between the direction of motion and the direction in which the function ©(¢, x) decreases in the
controllability function method is no less than the angle in the dynamic programming method and no
greater than in the Lyapunov function method.

It is of interest to construct vector controllability functions by analogy with the Lyapunov vector
functions introduced by Bellman [11] and Matrosov {12]. Such functions were constructed previously
in [9] for autonomous linear systems.

2. SOLUTION OF THE PROBLEM OF SYNTHESIZING INERTIAL
CONTROLS FOR A LINEAR COMPLETELY CONTROLLABLE SYSTEM

Consider the linear system

2n-2+1

= ANx+B(u, xeR', ueR; A()eC , B(tye c '

2.1)

Here and everywhere henceforth, unless otherwise stated, we will assume that ¢ € [ty, ¢;]. Without
loss of generality, we will also assume that rankB(¢) = r. We will put A = A(¢) — Ed/dt (E is the identity
matrix) and assume that

rank(B(t), AB(t), ..., A" 'B(t)) = n (2.2)
and this rank is realized in the column vectors of the matrix
K(t) = (by(0)s o A" By (1), s B0, s AV 0 (1)) Myt An, =1 (2.3)

where b(¢) is the i-th column of the matrix B(r). We will put

ng=maxn;, S,=0, s,=n+...+n, k=1,..,r
1sisr

Suppose we have the expansions
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r nj-l

Aty = Y T A0A B0, i=1,..,r (2.4)

j=1lk=0

where yjk(t) e C" :yj‘:k(t) = 0forj <i, k> min{n;, n;— 1} orj 2i,k > min{n; - 1,n, - 1}.
Following the approach proposed previously in [7], we choose a vector function ¢(¢), ..., c(f) € C"
from the conditions

K*(t)e,(t) = e; e, = (0,...,0,1,0,...,00% k=1,..,r

(the asterisk denotes transposition).
Consider the non-degenerate matrix

n -1

L(E) = (€1(8)s ooy BY T 018y o €(0), s At e (t))%; Ay = AX(t) + Edldt

We introduce the matrices
D(O) = diag(D,(©), ..., D,(©)), D©) = diag(®@ """V,

H* = diag(HY, ..., H}), H; = diag(-(n;—k)/a—-1/Q2a)),_,, i=1,..,r

Consider {F;'(©}, | — a family of positive-definite matrices of the form

1/
ae'®

— t o
F\(@) = J (1 —m) exp(—Agt)ByBi exp(-Af)dt (2.5)

where the n x n matrix A, has the form Ay = diag(Ag;, ... , Aor), Ao; is an n; X n; matrix, the elements
of the first subdiagonal of which are unity, and all the remaining elements are zeros, and By is an
n x r matrix in which the elements (By),; = 1 (i = 1, ..., r), while all the remaining elements are equal
to zero. The matrix F(©) can be represented in the form [8]

F(©) = D(©)F,D(©) (2.6)
The matrix F, = F,(1) satisfies the equality
FoA +A}YF, = —Fy+ F H  + H'F =-F";, A, = Ay-112B,B}F, (2.7)

Analytical inversion of matrices of the form (2.5) were carried out previously in [13].
Suppose ay > 0 is a so far arbitrary number. For o = 1 we will determine the controllability function
O,(t, x) when x # 0 from the equation

2a,© = (L*¥(1)Fo(©)L(t)x, x) (2.8)
and put
0,(1,0) =0 (2.9)

It is easy to show that the following assertion holds.

Assertion 1. For each o> 1 Egs (2.8) and (2.9) define a non-negative function © = O,(t, x), continuous
for all x and continuously differentiable for x # 0.
Suppose © > 0 is a certain number. We put

Ry = 8,2a,0/(L2,|Fo(O)|

), 8€(0,1), Ly = ,0‘2?2‘,,"“')“
Assertion 2. For each o > 1, a positive number ¢, < ((¢; - £)/0)* exists such that the set
Qq(1) = {x:04(t,x)<Scy} (2.10)
is bounded and Q,(f) C QL = {x:||x|| < Ry}
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Proof. From the relations
{x: (L*()Fo(®)L(1)x, x) < 2408} 5 {x : 1l < 2a,8/( L2, [ Fo B}
we have
20,8 > (L*(DF(®)L(t)x, x), xe€ QL\{0}
Since (L*(1)F(®)L(f)x, x) is a decreasing function of ©, on the basis of the inequality
(L*(DF(®)L(D)x, ) 2 I L Fl @ L = max. I o
(ERE
we have

Q> {x: ©,(1,x) S Ra/(2ay LY F (B)))}

Using the expression for R,, we can therefore conclude that for

R 05’0 h-1 u}
Cq = mm{LﬁngﬂFu(@)H"F;‘(@)"’( p- ) , 6€(0,1) (2.11)

the inclusion Q,(f) C Q: holds.
We specify the control ¥°(t, x) for x € QL()\{0} by the formula

u’(t, x) = —M“(t)Bz)*(l/zFu(eu(t, x))L(t) + L(t) + L(1)A(2))x (2.12)
where M(¢) is an upper-triangular 7 x r matrix with elements

m(8) = 1, my(r) = (Ay c(O)*b) for j>i, i=1,..r

Assertion 3. The derivative of the function ©,(t, x), by virtue of system (2.1) with control u®(t, x) of
the form (2.12), satisfies the equality :

Ou(t, x) = -0, (1, x) | (2.13)

Proof. We will further assume ©, = (¢, x). We put
¥(O©,t,x) = D(O)L(t)x, Py = -12B¥F,, A(r) = (L(t)+ L(DAW)L™' (1)
Then Eq. (2.8) and control (2.12), by virtue of (2.6), take the form
2000, = (Foy(Oq, 1, x), Y(O, t, x)) 2.14)
W, x) = M (187 *VPyy(O, 1, x) - BYA()L(Hx) @.15)

We will calculate the derivative y(9,, £, x) by virtue of system (2.1) with a control of the form (2.15). By virtue
of the choice of ¢y(t), ... , ¢,(t) we have the equation [7]

L()B(1) = BM(1), (E~ByBF)A(t) = 4, (2.16)
Then, on the basis of Eq. (2.1) with a control of the form (2.1), using relation (2.15) we obtain
%{L(:)x] = AgL(Dx + 6778 Py(@,, 1, x) 2.17)
From the relation y(©y, £, x) = D(0,)L(t)x, using equalities (2.17) and
D(©)A,D "' (©) + D(8)B,P,0 "% = 4,07 (2.18)
we have
Oy 1, x) = (OO, H" + 4,07"%)y(0, 1, x) (2.19)

Then, from Eq. (2.14), using equalities (2.19) and (2.7), we obtain Eq, (2.13).
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It follows from (2.13) that the time of motion T,(ty, x,) from an arbitrary point xy € Q,(t) to the
point x; = 0 is given by the equation

1/a

Ta(to, xO) = a@u (to, xO) (2.20)

Further, to prove the boundedness of the control and its derivatives, the following result is necessary.
We put
1 for 0<k<ng

my = min{ng, k}, & = {0 for ny<k<l
We also put
P, = P,_((r,-Ua)E-H*+A)), r, = klo+1/20)
k k~i
£(1,0) = ¥ Ci{[M"(t)]“‘"E’G"‘"i”“Pi—[ Y ci_ M @en* T praY (t)) X (a21)
j=0

i=0

m; -1
x[ Y %R 4 aiA;',D“(e)e"JJ
ji=0

R; = Ay~ T'BP, 2.22)

where C,’; are binomial numbers. Here and everywhere henceforthk =0, 1, ... , L
The kth order derivative (1%(t, x))® of the control u%(, x), by virtue of the closed system (2.1), is
given by the formula

W, )Y = 0,1, 0,)(0y 1, %) 2.23)

We will show that the control and its derivatives are bounded. We put

~ ~ — k
i, = max |BXAIY] M, = max [iar'on®)
1SSy 19S5,
k i ki m;—1 .
i —i i ~ -/ \]
ne=Y c;[c; YeM,_|P) +(Z Ci_,-Mk-.--jaj]( Y ca IRy +5iCaJ:| (2.24)
i=0 Jj=0 j=0

(k+1/a, for c,<1
Y= Vmg+k-iYa, for c,>1
Here and everywhere henceforth the constant c is defined by expression (2.11).

Assertion 4. For each o > 2/ + 1 the control u®(t, x) and its derivatives (u(t, x))\, ..., @®(, x))®
by virtue of the closed system (2.1), satisfy specified constraints of the form

low?e, )l <dp, x€ QuN{O}, te l1g 16+ To) (225)

Proof. From expression (2.22) we obtain the inequalities
[6x(t, Og(t, X)) Sy x€ Qu(MO}, te [15,1)]

Then, from the form of the control (2.15) and its derivatives (2.23), we obtain that when t € [ty, fp + T) C
[to, 1] the following inequalities hold

lw®t, ) < ndy(©4 1, 0|07, x e Qu(N0} (2.26)



658 V. I. Korobov and V. A. Skorik

From Eq. (2.14) we have
1Y@ 1, 0)|* < 2800, F |, xe Ol

‘We then obtain from inequalities (2.26)

la® e, Nl sn a7 el ™™ xe 0(0MOY, e [ty 1+ Ty) (2.27)

Choosing aq from the condition

2 1-2r,

0<aps min_ dul2|F|mies ™™ (2.28)

we obtain from inequalities (2.27) that the control and its derivatives satisfy constraints (2.25).

Theorem 1. Consider system (2.1) where / > 1 is a natural number and rank B(f) = r, condition (2.2)
is satisfied and we have the expansions (2.4). Suppose o> 2/ + 1, the number a; is chosen from condition
(2.28), the controllability function (¢, x) is defined by Eq. (2.8) and condition (2.9), the constant ¢,
is defined by expression (2.11), and the set Q,(¢) is defined by expression (2.10).

Then the control u°%(z, x) of the form (2.12) solves the problem of synthesizing inertial controls for
system (2.1) for x € Q. (#)\{0}, while the time of motion T,(¥y, xo) from an arbitrary point x(t;) =
Xp € Qulty) to the pointx; = 0 is given by Eq. (2.20).

Proof. For each a 2 1 a controllability function ©(z, x) is constructed which satisfies conditions 1
and 2 (Assertion 1), for which conditions 3 and 5 (Assertion 2) of Theorem 1 from [10] are satisfied.
The satisfaction of condition 4 follows from the following. The control u®(¢, x) of the form (2.12) satisfies
the Lipschitz condition in each region {(t,x): t <t <1}, 0 < p; < ||x}| < p,} with constant L (p p2) =
+e0 as p; — 0 and when o =2/ + 1 together with the derivatives (u%(, x))?, , (u% (t x)¥
of the form (2.23) satisfies the specified constraints (2.25) (Assertion 4). The derivative of the function
O4(t, x), by virtue of the closed system (2.21) with control (2.12), satisfies Eq. (2.23) (Assertion 3).

Then, we obtain the assertion of this theorem from Theorem 1 from [10].

We will obtain the trajectory x(¢) of system (2.1), corresponding to the control u%(z, x), with begins
at an arbitrary (Pomt X9 € Qulty) and ends at zero. We choose gy from condition (2.28) and find the
positive root ®, of Eq. (2.8) for x = xy and ¢t = ¢;,. We consider the Cauchy problem

£ = A(t)x— B()M ™ (1) BX(112F ,(8,())L(t) + L(t) + L(t)A(1))x

(2.29)
x(t(]) = xO
8a(r) = -0, "%(1), B4(1o) = O (2.30)
Solving problem (2.30), we have
0,(1) = ((tg+ Ty—)/0)®, T, = a(®@"”® (2.31)

Then, x(¢) is the solution of the Cauchy problem corresponding to problem (2.29) after substituting
expression (2.31) into the right-hand side of the equation.
We put z = L(t)x. Using Eqs (2.16) we obtain

¢ = (Ag— V5 BoBEFo(((1g+ Ty - I)*))z,  2(25) = L(1g)x,

or, in component-by-component form (everywhere henceforthi = 1, ..., r)

n; ’l —-k+1 0]
=1 n _ 1 f:is,-_l+kzs,-_,+k
J = Ly ey 7y 9 x - 22 n,-—k+l

s,y 4j = Ly 4+

-1 .
2, 4 j(t0) = (A% c(t)*xy, j = 1,..,m;

where fi are the elements of the matrix F,. Hence we obtain
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n—k (n;—k) =0

n;
n; (",‘) k o0
219+ Ty—1) 'z, 41+ 20‘ Fosiconillog+To=0)" 2" ) =

k=1 (2.32)
zilj‘)‘ﬂ(to) = Zs,.,,+j+1(’o)’ J=0,..,n-1
We put
Ay = —dldt, Ay = (-dldi+k-1)...(-dldt), k =2,..,n,

By replacing the time ¢ = ¢, + T - €' from relations (2.32) we have the Cauchy problem in the functions
YT =25 +1(to + T —€7)

n;—1

k i
28,50+ Y o foy i Ay +a e L y(T) = 0
k=1

V(%) = cE(t)xg coer (B, _13)(Tg) = T (A 'cilt))*xg; To = In(tg + Tg)
Since
g, +1(0) = y(In(ty + Ty - 1))
the remaining functions z,, | , 5(¢), ... , z,(f) are found by differentiating the last equation, i.e.
4 =200, j=2.n

The trajectory x(t) is defined by the equality x(f) = L™'()z(¢) and, as can be seen from the above
discussion, one only needs to solve Eq. (2.8) once to find it.

Example. Consider the problem of the positional synthesis of inertial controls for a model two-
dimensional system of the form

; 1 1
X = — x| +——=x,+ ——u
1+4:¢ (1+t)2 1+¢
(2.33)
X, = _xl—l—i—tx2+u, te [0,3]

with constraints on the control and its derivative of the form (1.3), where dy = 1 and d; = 3. System
(2.33) is completely controllable since condition (2.2) is satisfied for ¢ > 0. We will consider the case
when o = 3, and this subscript will not be indicated in the notation. We will choose a number a, from
condition (2.28), putting it equal to 6/(136 + 43\/—1?)). The equation for determining the function
O(t, x) when x # 0, according to Eq. (2.8), has the form

12 2 10 .23 2 101
—_— O - 2(1 +Dx +x,) == " (2(1 + Dx, + x,) X
136 +43./10 27 i) T el (234)
><((1+t)2x1—(l+t)xz)—-1%(1+t)2((1+t)x1-?€z)2 =0

From condition (2.11) we obtain that, when © > 8123956 and values of & and ¢ close to unity, the constant
= 1. The region Q(¢) has the form

0(1) = {(x), %) : (1 + 03 (7T + 341+ 55)x° = 2(1 + 1)(~ 13 + 161 +
+508)x, %, + (5 - 21 + 5¢°)x2 < 1944/(680 + 215./10) }, r€ [0, 3]

The control u(t, x) from (2.12) is given by the formula
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u(t,x):—( 5 + 2 )l+t

30”%(,x) (1+1nY 6

_(39"350, x) 1 i t)(2(13+ Pxi+3 3 2)

This control solves the problem of synthesizing inertial controls for system (2.33) in the region Q()\{0},
t € [0, 3], and together with the derivative

5 + 5 + 4 \1+t
30(,%) 314000 x) (1+1)) 6

(T +8)x;—x5)—

({(1+)x-x3)+

u(t,x) = (

5 5 1 \2+0
+ L+ ax
+(9@ B,x) 314007 x) (1+1)° )( 3 3 2)

satisfies the constraints |u(f, x)| <1, |u(t, x)| <3 init.
Suppose 0V is the positive root of Eq. (2.34) when ¢ = 0 and x = x,. We will introduce the notation

T = 30%", y@) = Joln(T-1), v, = 6T

{2} = T3[é(x, xz)({ 08 }70+A/3{_s‘:i S}YOJ 34/_(2x1 xZ)T{—c }YOJ

The trajectory of system (2.33) corresponding to the control u(¢, x) and proceeding from the point
x(0) = x5 € Q(0) to zero, is given by the equations

5 = =2+ Tn), %) = - Tn () +50)
(1+t)

(1) = (T =) (k;cosy(e) + kysiny (1))
2,(t) = (T~ £)X(~ (3k, + Jf6k;)cosy(t) + (J6k, — 3k;)siny(z))

The control and its derivative along this trajectory have the form

u(t) = _((Tl_st)z ¥ (1 f;) ) (0= ( l-ll-t)zz(t)

15 4 5 5 1
5+ o+ + - )
“= ((T 1’ (1+t)(T 1)? (1+:)3)z' (Z(T—t)2 (1+(T-1) (1+,)2)Zz

The region Q(0) (its boundary is represented by the thick curve) and the phase trajectories, which
transfer the points (0.1, 0.1), (-0.17, 0.5), (0.13, -0.67) € Q(0) to zero, after a time T = 2.797, T = 2.944
and T = 2.945 respectively, are shown in Fig. 1. In Fig. 2 we show the control and its derivative on
trajectories which begin at the point (0.13, -0.67) € Q(0) and end at zero. They obviously satisfy the
specified constraints.

3. SYNTHESIS OF CONTROLS FOR A NON-LINEAR SYSTEM
TO A FIRST APPROXIMATION

We will consider the problem of synthesizing controls for system (1.1) with constraints on the control
of the form (1.3) when / = 1. We will assume that the function f{¢, x, u) satisfies the condition
f(t, 0, 0) = 0 (everywhere henceforth we must again bear in mind that ¢ € [¢,, #;]) and has derivatives
with respect to x and u that are continuous up to the second order. Then, in the neighbourhood of zero,
we can write system (1.1) in the form
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0.8

X

FEN!

0.5

0.8 i
0.4 0 04 =104 1 2 1
Fig. 1 Fig. 2
= Ax+B(u+g(t,x,u); A(t) = f,(1,0,0), B(t) = f,(0,0) 3.

Here g(t, x, u) is a continuous function; we will assume that it satisfies the inequality

5 8 5 5,
lg(t, x, )l < cyllxl™ + collxl el ™ + c5llael ™ (3.2)

where

€20, ¢;20, 320, s5;,>1, s,+5>1, s54>1

We will put

’ = L ’

2n,-4 2np+ S, ~5,—3 2n,—2 2n 2n, -5, + 5, 2n
0, = max{3, 0 -1, ot S3—~5 i by 0 0= 52%5%3 o
sl—l S2+S3—1 S4—1 sl 32+S3 S4

Theorem 2. We will consider the controllable system (3.1) where A(t) € C* !, B(t) e C*,
rankB(t) = r, for which condition (2.3) is satisfied, and we have expansions (2.4). Suppose the function
g(t, x, u) satisfies inequality (3.2) and in each region

{(t, x,u) 1 t5<1<t;,0<p, < lxll S py, llull Sdg}
satisfies the Lipschitz condition
lg(e, x", u") — g (2, x', Wl S Lo(py, p2)(Ix" — x| + " ~ ')
Then, positive numbers ag and ¢, < 1 exist such that, when o 2 o, the control
u’(t,x) = —1/2M'1(t)BS‘Fu(9a(t, x))L(t)x (3.3)

where the controllability function ©,(t, x) is defined by Eq. (2.8) and equality (2.9), solves the problem
of synthesizing controls for system (3.1) in the regionQ,(¢) = {x: O(t,x) < ¢,} and satisfies the constraints

b, ol <dy, e, 0l <a, (3.4)
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The time of motion T,(ty, Xo) from the point x(¢)) = xo € Qq(fy) to the point 0 along the trajectory of
system (3.1) with control u®(t, x) satisfies the inequality

Totgr Xo) < (/Bo) Oy “(2, %), Ba>0

Proof. Taking into account the result proved in Section 2, by Theorem 1 from [10] for the complete
proof of this theorem we need to show that the control and its derivative, by virtue of the closed system
(3.1), satisfy the specified constraints, and we need to establish inequality (1.4) for system (3.1) with
control (3.3), the satisfaction of which ensures that the trajectory will be incident on the origin of
coordinates after a finite time.

We will put

y(0,t,x) = D(O)L(t)x
and rewrite control (3.3) in the form
Wt x) = M (D020 (t, x)Pyy(84(t, %), 1, x) (3.5)
We will further assume that
© = 0,(1,x), ¥ = ¥(Ou(t,x)1,x), D = D(Oy(t,x)), g = g(t,x,u’(t,x))
On the basis of Eq. (3.1) with control (3.5) and Eqs (2.16) we have
d(L(H)x)ldt = A,L(DHx+© "B Py + L(t)g
Then, as above, using Eq. (2.18), we obtain
y = (00 H*+07"A,+ 0¥ B B*A(\D ")y + DL(1)g (3.6)
From Eq. (2.14), using relations (3.6), (2.14) and (2.7), we have
© = -0'""+ (@' "V (x(1)y, y) + 20(Foy, DLNR)(Fy, y)
X(t) = F BBEA(1)D™" + D™ A*(1)BBEF, G1
Then, on the basis of Eq. (3.7), the derivative of the control u*(¢, x) of the form (3.5), by virtue of the
closed system (3.1), has the form
W%t x) = M (0P iy + M (00CVp y 4 M (1@ ¢
x PoDL(t)g + M\ (1)0™/*P B BXA(1)D™'y + M\ (1) Po(H* - EI(2))y X (3.8)
x[07*(x(1)y, ) + 207" (Foy, DL(NG)U(F"y, y)
From (2.14) we have

J2a®TF]] < Iyl < . 20,0] F, | (3.9)

Then, since
Fy, ) = Il

—nglo.+ 1/(20)

ID@©)l<© ., o @] <e"®, o<1

from relations (3.7), (3.5) and (3.8) we obtain the inequalities
: -1l .
6 <—(1-20"F 7 la,-

_ 2/a0®_ 12 -ny/a + 3/(2(1)Lmax"Fa"3/2“(F.¢)_1“ "g" )el -la (3.10)
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a0l < o fag@' 40 g = M| Fof|FL] 143 (3.11)

it 2l 2 1 Jag®' % + 1y 3,0 4 @™ g

By = Bo(1 +nplo+ |Fo|/2) (3.12)
IEIFS] M, + Mg + 2ng| Fof (P agror 2

Mol Fo (172 + g Fo (P 100 L

293

Ma

The quantities dy, My, M, are defined by formulae (2.24).
We will obtain an estimate for ||g(L™()D"'y, u%(t, x))||. Using inequality (3.2), the form of the control
u®(t, x) and the right-hand side of inequality (3.9), we have

gl S paay 767 OV g gy IO st
w = e 2 F "

s = e Legle R (.13
s = ex2 ™ a e P

We then obtain the following inequality from (3.10)

6<-p(©)0' " (3.14)
where

Bo(©) = 1-20"*|F o 7 s - V2 F 2 (F*) | L ey x
y (l—l4a:)xl CNTON Hsaf;z #5-D2g@ | “6aé:4— 1)/2®v,(u))
Vi(0) = (5, - 1)/2 = nglo+ (s, +3)/(20) 2 0

Vo) = (53+ 83— 1)/2—np/a+ (5y—-53+3)/(20) 20

Va(0) = (s,— 1)/2 - nglou+ (3 = 5,)/(200) 2 0

when o 2= 0. From inequalities (3.13), (3.11) and (3.12) we obtain

lu®t, o <pofag 5% 0l Sw(ag), xe {x: Ot x) <min{cy, 1}} (3.15)

where
W(ag) = (M +Uy) Jag + P-3(l~l4az>1/2 + usa(()szn,)/z + uﬁa:;/z)
Suppose the number a, satisfies the inequalities
0<ag<dglug, Wlag)<d,
We choose a positive constant ¢, such that for 0 < © < ¢, the inequality B,(©) > 0 is satisfied. We
choose ¢, = min{c, ¢, 1}, and consequently, we have Q(t) C Q.(t) C QL. For these a, and ¢, we
put B, = Bu(¢,). From (3.14) we then obtain the inequality
Ou(t, 1) < —Ba®y (6, %), x€ Qalt)

Hence, we have established inequality (1.4) when B = B, and o > oy,
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It follows from inequalities (3.15) that the control and its derivative satisfy constraints (3.4) for

x € Qu(H\{0}. The assertion of Theorem 2 follows from Theorem 1 of [10].

W

10.

11.
. MATROSOV, V. M,, The theory of the stability of motion. Prikl. Mat. Mekh., 1962, 26, 6, 992-1002.
13.
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